Robust multi-objective control for the station keeping of the interferometric cartwheel
نویسندگان
چکیده
Groups of satellites flying in formation require maintaining the specific relative geometry of the formation with high precision. This requirement implies to consider the problem of relative station keeping in a renewed framework. In this framework, issues related to the derivation of reliable relative models as well as to the peculiarity of the synthesis problems must be jointly considered. This paper presents some preliminary results of a robust multiobjective control approach applied to the station keeping of a low Earth observation system, i.e. the interferometric cartwheel, patented by CNES. This wheel is made up of three receiving spacecrafts, which follow an emitting Earth observation radar satellite. The particular geometry of this formation of satellites leads to the derivation of a simplified uncertain state-space model. Atmospheric drag perturbations are included in the linearized equations of the relative motion and the atmospheric density part of the definition of the atmospheric drag force is considered to be uncertain due to its dependence upon the solar activity. In the first part of the paper, an uncertain polytopic state-space model is derived. The second part describes the station keeping strategy of the formation. The station keeping strategy is performed using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis has to be controlled. Differential drag due to a differential orientation of the solar panel is used here to control relative altitude. A robust multi-objective control strategy via state-feedback is developed and tested as autonomous orbit controller. These results are analyzed via highly non linear simulations performed on a platform of CNES.
منابع مشابه
Robust optimal multi-objective controller design for vehicle rollover prevention
Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The obj...
متن کاملمساله کنترل مدت زمان ساخت چند هدفه استوار در سیستمهای مونتاژ پیچیده
In this paper, a robust multi-objective model to optimally control the lead time of a complex assembly system is introduced. The system is modeled as an open queue network, whose service stations represent manufacturing or assembly operations. It is assumed that the products arrive independently according to a Poisson process. In each service station, there is either one or infinite number of...
متن کاملA weighted metric method to optimize multi-response robust problems
In a robust parameter design (RPD) problem, the experimenter is interested to determine the values of con-trol factors such that responses will be robust or insensitive to variability of the noise factors. Response sur-face methodology (RSM) is one of the effective methods that can be employed for this purpose. Since quality of products or processes is usually evaluated through several quality ...
متن کاملMulti-objective scheduling and assembly line balancing with resource constraint and cost uncertainty: A “box” set robust optimization
Assembly lines are flow-oriented production systems that are of great importance in the industrial production of standard, high-volume products and even more recently, they have become commonplace in producing low-volume custom products. The main goal of designers of these lines is to increase the efficiency of the system and therefore, the assembly line balancing to achieve an optimal system i...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008